
California's Regulatory Carbon Market: Panacea or Pandora's Box for Forest Landowners?

Charles Kerchner

-Spatial Informatics Group, LLC

American Forest Foundation March 21th, 2013

Presentation outline

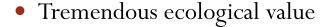
- Spatial Informatics Group LLC background
- California's compliance market
- Improved Forest Management project example
- Factors driving project viability
- Lessons learned

Spatial Informatics Group LLC (SIG)

• Founded in 1998, SIG is an eco-think tank that uses high-end forestry and geographic analysis to answer questions related to the environmental field

- Three areas of focus:
 - 1) natural hazards assessment, planning and mitigation;
 - 2) ecosystem service quantification and management.
 - 3) forest carbon
 - Expertise in project assessment, project analytics, protocol development, monitoring and project documentation.

Forest carbon experience


- 6.8 million carbon offset credits on 485,000 acres under the Climate Action Reserve (CAR), Air Resources Board (ARB) and Verified Carbon Standard (VCS)
- Our role is to work on behalf of the landowner
- Team includes: Thomas Bucholz, PhD; Charles Kerchner, MS; Nancy Budge, MBA; William Keeton, PhD; and Timothy Robards, PhD.

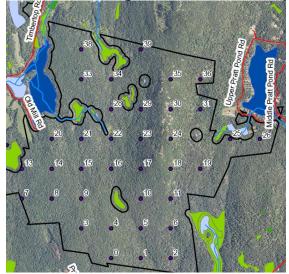
California market

- 2006 Governor Schwarzeneggar signed AB 32 to reduce California's GHG emissions to 1990 levels by 2020
- Capped entities can meet 8% of compliance obligation with offsets from uncapped sector
- Demand for offsets are expected to range from \$2 to \$8 billion by 2020
 - On par with USDA Farm Bill conservation payments for 2012
- Current value is \$10-\$12 per California Compliance Offset. Price will increase as the cap decreases

Case study: Howland forest carbon project

- Improved Forest Management project type
- 557 acre mature, lowland Spruce-Fir forest located in Central Maine
- Escaped mechanized logging typical of northern forest s in Maine

- Some parts have not been harvested since the Civil War
- Start date: 2007 purchased by Northeast Wilderness Trust



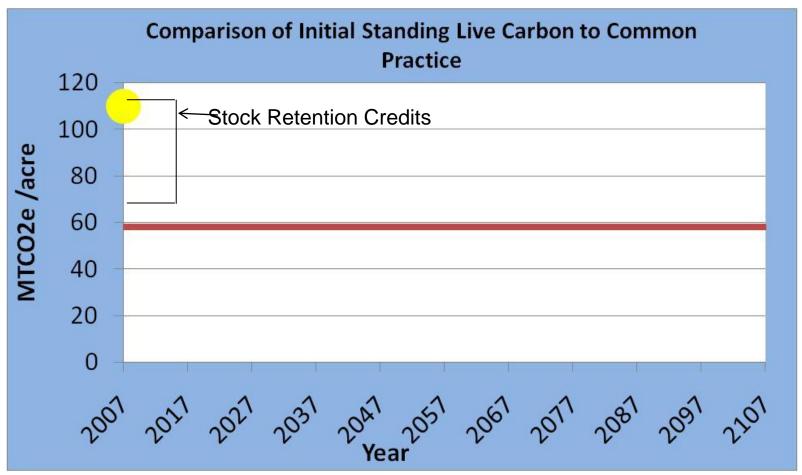
Landowner commitment

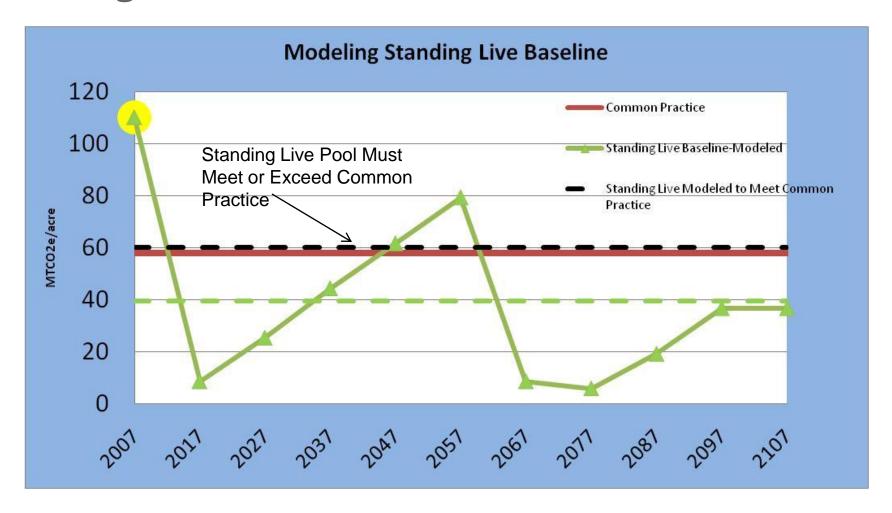
- Forest owners must monitor and verify a Forest Project for 100 years
- Initial site verification
- Site-visit verification every six years
- Monitoring annual reports
- Can harvest

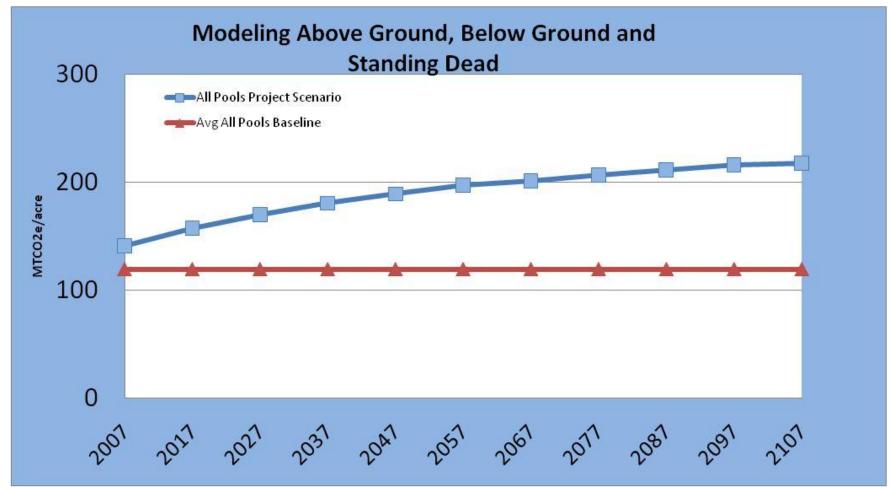
Inventory Methods

Stratified Systematic Sampling

Carbon Pools

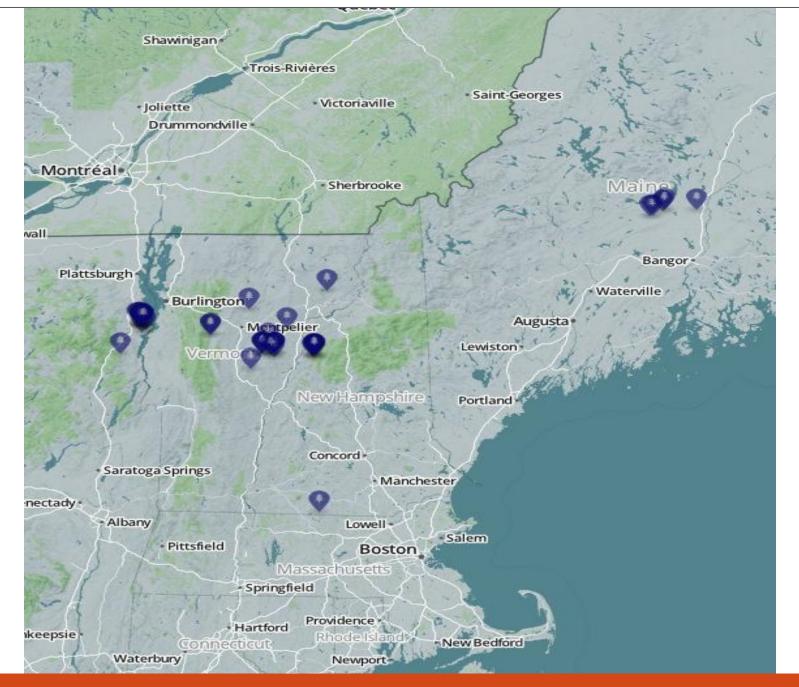

Plots


QA/QC


Comparing Initial Standing Live Carbon to Common Practice

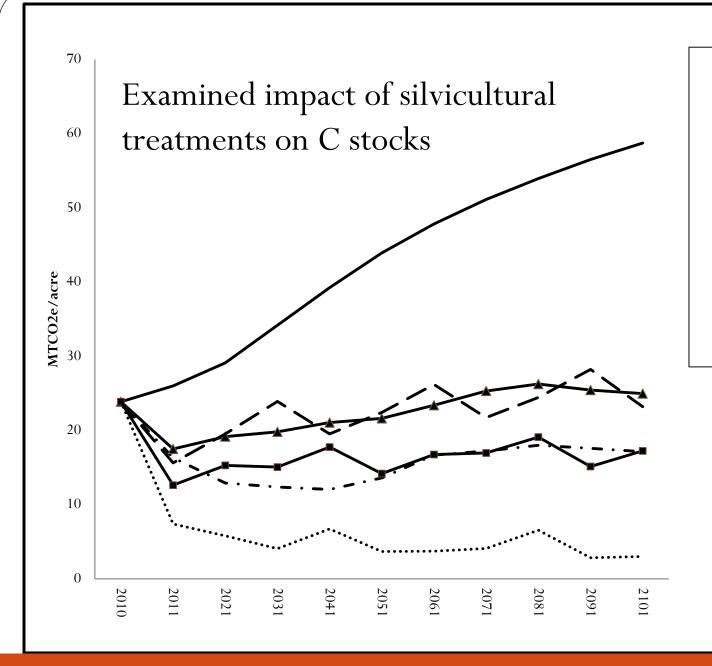
Modeling (Forest Vegetation Simulator) Standing Live Baseline

Growth Credits: Modeling All Required Carbon Pools


Typical project finances

Initial development costs	Cost	Frequency
Registry opening account fee	\$500	Once
Registry project listing fee	\$500	Once
Labor for account opening and project listing	\$1,500	Once
GIS stratification & inventory	\$15,000	Once
Growth and yield modeling and C quantification	\$30,000	Once
Travels costs and lodging for inventory	\$3,500	Once
Project Design Document	\$29,000	Once
Third-party verification and verification		
management	\$25,000	Once
Total initial development costs	\$100,000 - \$150,000	Once
Monitoring Costs		
Desk review verification	\$3,000	Annual
Registry fee	\$500	Annual
Annual carbon accounting, modeling,		
monitoring & reporting	\$5,000	Annual
Inventory	\$12,000	Every 12 years
Onsite third-party verification	\$15,000	Every 6 years
Other fees		
Brokerage fee	3%	
Registry credit issuance fee (cents/credit)	0.02	

Project viability



- What are the factors that affect forest carbon offset profitability?
 - 1. Property characteristics (i.e. size, forest stocking, forest type etc.);
 - 2. Silvicultural treatments;
 - 3. Protocol and legislative requirements and policy assumptions
- From a landscape perspective, where in the Northeast is the highest carbon sequestration potential at the lowest marginal costs?
- Funded by the Northeast States Research Cooperative. Conducted by the University of Vermont Carbon Dynamics Lab

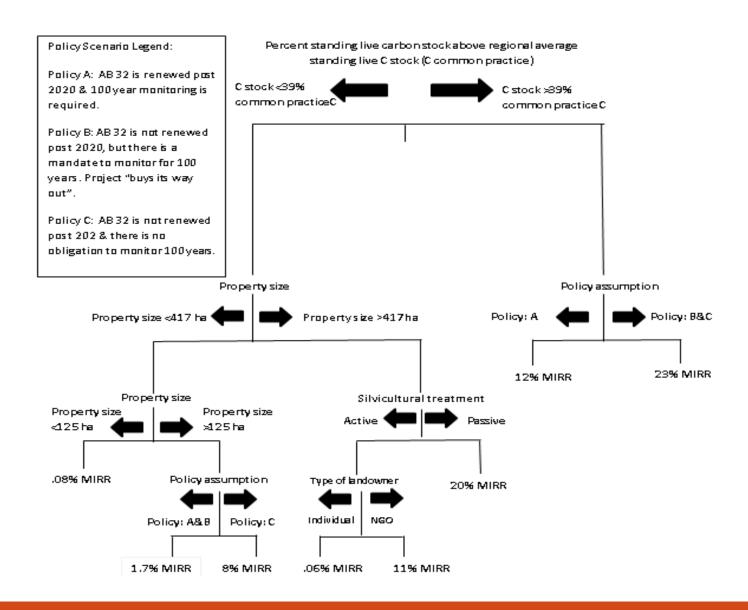
Methods

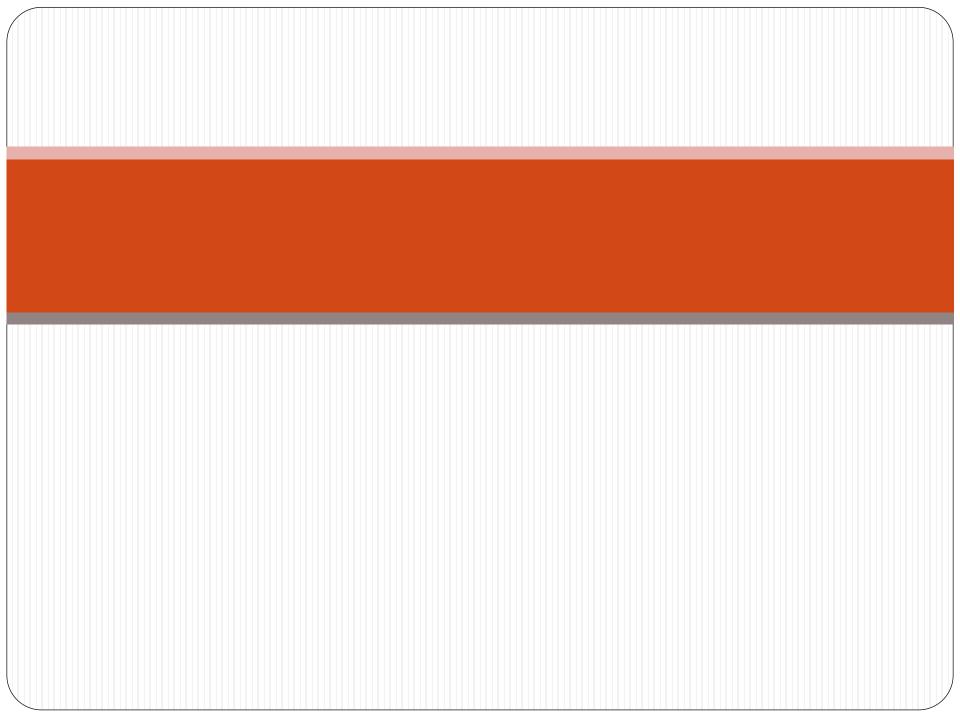
- Phase 1: Conduct inventory for 25 Non-industrial private landowners
 - Collect site specific data
 - Identify true costs and benefits
- Phase 2:Conduct growth and yield modeling and quantify C using California Air Resources Board forest carbon protocol
- Phase 3: Classified and Regression Tree (CART) analysis to identify predictors of financial return
- Phase 4. Sensitivity analysis to examine how the interaction of variables influence the financial attractiveness of a project

- No management
- · · Shelterwood
- → Irregular Shelterwood
- **─■** Group Selection
- ····· Patchcut
- **-** -STS

Examined policy assumptions

- 1. AB 32 is renewed post 2020 and 100 year monitoring is required.
 - Continues with 25 year crediting period
 - \$200,000 Reserve Fund for long-term monitoring
- 2. AB 32 is not renewed post 2020, but there is a mandate to monitor for 100 years.
 - Project "buys its way out"
- 3. AB 32 is not renewed post 2020
 - No obligation to monitor


Classified and Regression Tree (CART) analysis to identify predictors of financial return


- Identifies predictors of financial return
- Robust model
- Dependent variable: Modified Internal Rate of Return (MIRR)
- Independent variables; % conifer, site class, hectares, % C above common practice, silvicultural treatments, certification, conservation easement, current use, type of landowner and policy assumption

Results - testing hypotheses

- Hypothesis 1: Financial attractiveness is directly related to property characteristics, particularly initial C stocking level above C practice and property size
- Hypothesis 2: Policy assumptions have a significant effect on the financial viability of a project
- Analysis tells a more nuanced story: Profitable projects ranged from 1,500 - 12,000 acres

Results

Sensitivity analysis

- We chose 120 hypothetical scenarios combining a spectrum of: a) property sizes; b) stocking levels; c) policy assumptions impacting long-term monitoring costs; and d) management scenarios
- A fifth variable of whether it is self-financed by a landowner or third-party investor
- 25% MIRR break-even point
- Financial indicators —NPV and MIRR

Sensitivity analysis results

- 53 scenarios out of 120 scenarios were financially viable
- Spectrum:
 - One end: Smallest property was 1,500 acres with high initial C stocking, passive forest management and self-financed by a landowner.
 - Other end: Below common practice, active forest management and financed by a project developer was not financially viable at the largest size property (>12,000 acres)

Most profitable project had C stocking >40% above Common practice, was 12,000 acres, and assumed reduced long-term monitoring cost as a policy option.

Below C common practice

			Acres				
Scenario			500	1,500	3,000	6,000	12,000
1.	Stocking: below Common Practice Management: passive management Policy A	NPV	-\$255,251	-\$112,319	\$102,078	\$530,874	\$1,388,465
	Landowner finance	MIRR	-21%	1%	13%	24%	36%
		Financially viable	N	N	N	N	Y
	Project developer finance	MIRR	-35%	-11%	9%	19%	30%
		Financially viable	N	N	N	N	Y

Stocking >40% above C common practice

			Acres			
		500	1,500	3,000	6,000	12,000
Stocking: >40% above Common Practice Management: passive management Policy A	NPV	-\$95,723	\$366,266	\$1,059,249	\$2,445,216	\$5,217,149
Landowner finance	MIRR	-11%	33%	49%	64%	80%
	Financially viable	N	Υ	Y	Y	Y
Project developer finance	MIRR	-23	17%	28%	40%	53%
	Financially viable	N	N	Y	Y	Y

>20% above C common practice with harvesting

			Acres			
		500	1,500	3,000	6,000	12,000
Stocking: >20% above common practice Management: harvesting Policy A	NPV	-\$185,096	\$98,146	\$523,008	\$1,372,734	\$3,072,186
Landowner finance	MIRR	-100%	17%	32%	46%	61%
	Financially viable	N	N	Y	Y	Y
Project developer finance	MIRR	-100%	-10%	20%	31%	42%
	Financially viable	N	N	N	Y	Y

Research - take home message

- 1. Main predictors of project profitability
 - A. % project C stocking above the regional C stocking ("common practice")
 - B. Property size
 - C. Policy assumption
 - D. Silvicultural treatment
- 3. Interaction of predictors that estimate project offset profitability
 - 2,000 acre 'no management' scenario that is 40% above common practice
 - >12,000 acre project that is below common practice may not be profitable
 - Much of it depends on the policy assumption

Panacea or pandora's box?

- California's regulatory market is not for everyone
- Until an aggregation protocol is accepted by ARB, it will be difficult for small-scale landowners to participate
- However, it can provide substantial revenue for some landowners
- It works for landowners:
 - With larger size properties (>1,500 acres)
 - Are well stocked compared to the regional average
 - Conservation oriented management
 - Willing to make a long-term commitment

Thank you

- Charles Kerchner
 - Spatial Informatics Group, LLC
 - Email: <u>ckerchner@sig-gis.com</u>
 - Tel: 802-999-6986
 - http://www.sig-gis.com/